
Configure a SDN Router to Process Packets
with Different Priorities

Xuyang Cao

University of California San Diego, San Diego

December, 2019

Abstract

In a LAN there is usually one router serving as the gateway to the internet. Ubiquitous computing
and new communication models have enabled more and more networking devices to transfer data
concurrently within a LAN. Among these devices, some may be critical and may require an allocation
of constant high bandwidth for them. When competition exists, some less important but data-hungry
devices may deplete the bandwidth and hence negatively affect more critical ones. A regular router
usually evenly distributes the bandwidth under a competition and hence may fail to guarantee QoS
(Quality of Service) for certain devices. In this report I aim to build a router using SDN (software-
defined networking) technologies under Mininet’s simulated environment that will be able to process
packets from different IP addresses with different priorities and hence ensure a certain proportion of
bandwidth is achieved for certain devices. Also, I hope this technical report can provide a summary
of how to build a general SDN router using the described tech stack so you can further customize it
based on the actual needs.

1 Introduction and Technologies

In this part, what technologies are used and what are their roles in this project are briefly discussed,
coupled with some recap of general network-layer knowledge. In this way, I hope readers could have
a general if not complete understanding of tools and terms mentioned later and feel more comfortable
reading instead of constantly being interrupted by them and jumping into searching, as there are various
niche products and network-related tools that not everyone has used before.

• Mininet: an open-source network emulator tool originally developed by Stanford university. It
allows people to design topology, create SDN, generate the corresponding realistic virtual network
and test. Mininet alleviates the harassment of establishing the physical topology. Once the work
is done on Mininet, it can be migrated to some actual hardware and put into production[1].

• Control plane and data plane in network layer: in computer networking, the network layer can
be further divided into these two planes. Data plane is where data, or packets, are processed and
forwarded to where they should go, so basically all switching devices doing such forwarding tasks
belong to the data plane. On the other hand, the control plane is where instructions of how to
forward packets are generated and sent to those switching devices so the internet can be operated
in a way we expect. Control plane can be a piece of software, and our goal in this project is to
write such software in the control plane and link it to the router in our topology.

• Open vSwitch: the type of virtual switch available in Mininet. As a data-plane component, it can be
customized and controlled by control-plane components to have desired switching and forwarding
behaviors.

• OpenFlow: a communication protocol between the control plane and the data plane. It allows the
controller to send instructions to and install flow tables in the switching devices and decide how
specific packets should be forwarded.

• POX: a Python library available in Mininet. It allows developers to write their own controllers for
switching devices in the customized topology.

1

• Wireshark: a packet analyzer. It allows users to examine the details of packets passing through a
specific interface.

• Iperf and Netperf: tools measuring the throughput/bandwidth between two end hosts (by either
TCP or UDP).

2 Network Topology and Acceptance Test Plans

To be able to test and verify the effectiveness of our eventual work, we need to first design a static
network topology. Given the topology, we can then build our SDN router, put it into use, and set cor-
responding acceptance test plans based on the structure of the designed network.

Since we want the soft router to be able to handle packets generated from various devices in a LAN,
route them to the internet, and, in certain circumstance, to prioritize the forwarding of packets from
certain hosts and ensure their high throughput, we can create the following topology:

Figure 1: network topology

As the figure indicates, in our project we will create two networks, namely 10.0.1.0/24, 10.0.2.0/24,
which are connected by the router s2 in the middle. On the left of the router, 10.0.1.0/24 will be the
home network with 5 hosts h1, h2, h3, h4, h5 resembling various computing devices. Since they are in the
same LAN, a switch s1 is connected to all of them and then connected to the gateway 10.0.1.1. On the
right of the router, 10.0.2.0/24 will resemble the internet. We put an actual content server h6 there so it
can communicate and exchange data with our five devices at home. By this means, we can measure the
throughput/bandwidth between any pair (hx, h6), where x ∈ {1, 2, 3, 4, 5}. In this way, under different
scenarios these measured throughput values can serve as metrics to reflect the correctness as well as the
effectiveness of our SDN.

Among those 5 hosts h1, h2, h3, h4, h5, we let h5, or the IP address 10.0.1.105, be the high-priority
devices. Therefore, according to the aforementioned competition scenario, when those normal devices
(h1 to h4) are not competing for resources, each of them should be guaranteed a sufficient amount of
bandwidth so that they will be able to achieve various common operations in a stable and healthy man-
ner (e.g. buffering a movie, backing up data, system update, IP phone call between home and work).
However, for the high-priority device h5, since it can represent a handful of data-hungry devices (like
HD security monitors), during off-peak time it should be able to utilize nearly all available bandwidth,
if necessary. Also, even when the all hosts are busying sending data, with the help of this SDN router h5

should still tightly control a considerable amount of bandwidth allowing, for instance, several numbers
of HD streaming.

Therefore, we can list out several specifications where our acceptance testing will soon be based on:

1. The switch s1 should allow devices in the home LAN to communicate with each other (i.e. for-
warding frames based on the MAC addresses and broadcasting).

2

2. The router s2 should allow devices in the home LAN to communicate with the content server h6

in the internet (i.e. forwarding IP packets).

3. When only one “normal” device in home LAN is (constantly and intensively) using the internet
(i.e. exchanging data with h6), it should have a sufficient amount of bandwidth x, and we set that
300Mbps < x, given the total available bandwidth is more than 1Gbps.

4. When several “normal” devices in home LAN are transmitting data with the internet concurrently
and competing for the bandwidth resource, they should equally divide the available resources.

5. When only the high-priority device is (constantly and intensively) using the internet, it can occupy
(nearly) all the bandwidth and achieve very high throughput.

6. When “normal” devices and the high-priority device h5 are attempting to transmit unbounded
amount of data concurrently, h5 should be able to occupy most of the bandwidth, while the others
can share the remaining small amount of bandwidth.

3 Softerization of Control Plane

As we have discussed in the first section, to enable packet switching/forwarding in a network com-
ponent, we need to install some software in it so the software can serve as the “brain” and give the
hardware correct instructions of what to do when it receive some random packet. In Mininet as well
as most SDN-friendly switching devices in the current market, OpenFlow is one of the major protocols
used for communications between the control plane and the data plane. Here is the general workflow[3]:

* The control plane (the switching device) and the data plane (the software) doing handshakes
periodically to ensure the connection is still on.

1. When a packet arrives at the switching device at some interface, the device will first try to query
all the flow entries installed in its flow table. If this packet matches criteria in any specific entry,
the packet will then be processed based on the action written in that entry.

2. If no flow entries can match the packet, the packet will be forwarded to the control plane. The
software in the control plane will examine this packet, make decisions of what to do with it,
encapsulate both the instruction and the packet into a larger-sized OpenFlow packet, and send
this OpenFlow packet back to the data plane.

3. The data plane receives the OpenFlow packet, process the original packet based on the instructions,
and optionally install a flow entry if it is told to do so (usually it does so for the next time the
same packet will no longer need to be sent to the control plane and efficiency is promoted).

Our goal is to write such software so the switch s1 and the router s2 will be instructed to meet
the specifications described in section 2. In OpenFlow and Mininet, this type of software is called a
controller. There are several handy and powerful libraries in popular programming languages that will
empower developers to write their own controllers. For example, we have POX and Ryu in Python,
Beacon and Floodlight in Java, Trema in Ruby. We use POX in this project, and for any procedure
described below, you could always refer to some specific lines in the source codes come with this report.

Here is the high-level procedures we implement and adapt from online public repositories[2] for our
POX controller[4] in the control plane:

3

Algorithm 1: Controller for both switch s1 and router s2
Data: switch’s mac address table: switch mac to port; router’s routing table:

static routing table; packet received from the data plane: packet in
Result: OpenFlow packet is sent back to the data plane and instructs the hardware to forward

packet in to the correct port
1 switch mac to port← an empty map;
2 static routing table← map(host IP to array(router interface, host MAC address));
3 Procedure switch(packet)
4 packet src MAC ← source MAC address of packet;
5 packet dst MAC ← destination MAC address of packet;
6 port in← the incoming port of packet;
7 add packet src MAC and port in as a key value pair to switch mac to port;
8 if packet dst MAC in switch mac to port then
9 instruct the data plane to forward packet to switch mac to port.packet dst MAC;

10 current flow entry ← flow entry(criteria1: source MAC address ==
packet src MAC, criteria2: destination MAC address ==
packet dst MAC, action1: forward the packet to port switch mac to port.packet dst MAC);

11 instruct the data plane to install current flow entry;

12 else
13 instruct the data plane to broadcast packet to all ports except the incoming one;
14 end

15 Procedure end
16 Procedure router(packet)
17 packet type← Ethernet type of packet;
18 if packet type == ARP request targeting 10.0.1.1 or 10.0.2.1 then
19 assemble an ARP reply ARP reply;
20 source MAC address of ARP reply ← a fake MAC address like 40:10:40:10:40:10;
21 destination MAC address of ARP reply ← destination MAC address of packet;
22 instruct the data plane to send ARP reply to the incoming port of packet;

23 else if packet type == IP packet then
24 source MAC address of packet← router’s MAC address 40:10:40:10:40:10;
25 query static routing table using destination IP address of packet as the key, and we get

that IP’s MAC address final MAC addr and egress port port out;
26 destination MAC address of packet← final MAC addr;
27 instruct the data plane to forward modified packet to port out;
28 packet src IP ← source IP address of packet;
29 packet dst IP ← destination IP address of packet;
30 declare variable queue number;
31 if packet src IP == 10.0.1.105 then
32 queue number ← 1;
33 else
34 queue number ← 2;
35 end
36 current flow entry ← flow entry(criteria1: source IP address ==

packet src IP, criteria2: destination IP address ==
packet dst IP, action1: source MAC address←
40:10:40:10:40:10, action2: destination MAC address←
final MAC addr, action3: enqueue the packet to queue queue number and forward it to port out);

37 instruct the data plane to install current flow entry;

38 end

39 Procedure end
40 Create a listener listening to the data plane for any incoming packet packet in;
41 if packet in is from s1 then
42 switch (packet);
43 else if packet in is from s2 then
44 router (packet);
45 end

4

For a switch, its main job is to handle the frame switching in a LAN. Every time when a packet enters
the switch’s function, it will write the sender’s information into the MAC address table and therefore
know which port is the egress port when someone else tries to send something to this sender. In this way,
the controller not only can correctly switch frames but also distinguish itself from a hub device, which
always inefficiently broadcasts. Then, this series of operations in the control plane is installed as a flow
entry to the switch in the data plane so for the next time the same packet will be directly processed and
the efficiency is further improved.

As a network-layer component, the router will have more tasks in its to-do lists. For any of the hosts
in the home LAN to send data to the internet, it must first send the data packet to its default gateway,
which is this router. However, since the host and router are in the same network, they need to know each
other’s MAC address in order to communicate. Therefore, the router function in our controller program
should be able to handle ARP requests from its connected end devices. We use a fake but handy MAC
address 40:10:40:10:40:10 for the router’s all interfaces so when s2 receive any ARP request targeting
itself, it will generate and send back the ARP reply[9]. In addition, when an IP packet arrives, instead of
just forwarding it, the router should update the header of this packet: since the source and destination
MAC addresses denote the start and end of only one hop jump, the new source MAC address should be
the old destination, and the new destination MAC address should be the destination IP’s MAC address.
To this point, the packet can be forwarded with no error. However, since we want to prioritize the packet
forwarding for host h5, we can distinguish the senders by putting the incoming packets into different
queues of the router[6], and do the prioritization job in the data plane. When a packet arrive at the
queue, it will be automatically processed. However, we can customize the queue in Open vSwitch, and
the details are included in the next section. Like how to control the switch, this series of actions for
packet routing is installed as a flow entry to the router for the future convenience[3].

We can verify the switch and router works as we expect by letting h1 ping h6. As the following figures
indicate, all packets are processed in the way we want:

Figure 2: ping is successful

Figure 3: packets involved in h1 and h6 and their ARP caches

5

Figure 4: controller modified the packet arrived at s2

Sniffing packets on h1 and h6 when the ping starts (Figure 3), we see the ARP request from hosts
are successfully handled by the router and its “fake” MAC address is remembered in those hosts’ ARP
caches. After knowing the gateway’s MAC address, the IP packet, namely that single ping, then can
pass the router. Using Wireshark to examine the controller (Figure 4), we see the MAC addresses are
also successfully updated. Up to this point, we have the working switch and router, and specifications 1
and 2 (in section 2) should be met.

4 Configuration of Data Plane and Priority Queue

As we have discussed in the above section, Network layer consists of the control plane and the data
plane (Figure 5). Upon receiving instructions from the controller, the packets are then pushed into the
default/specified queue. In the data plane, we can add/remove and configure queues we want, though
hopefully the configuration somehow follows the intention of the control plane.

Figure 5: structure of network layer

In section 3, the controller has instructed the router to enqueue any packet from or to 10.0.1.105 to
queue 2, and others will go to queue 1. In this manner, the control plane helps the data plane differentiate
normal and high-priority packets, and now we will jump into customizing queues 1 and 2 so they will
have different performances and the tech specifications in our project can be met.

Firstly, we set up a bandwidth limit 2Gbps at the entry point of the home LAN. Also, to measure
the bandwidth, we use iPerf, which will try to transfer as many data as possible between two ends for a
certain length of time and probe the limit. When no configuration of queues has been set up, we measure
the bandwidth between pairs (hx∈{1,2,3,4,5}, h6) in various scenarios.

When only 1 host is busy transmitting data with h6, we have the result shown in Figure 6: every host
can utilize most of the available bandwidth (the maximum bandwidth is 2Gbps and iPerf uses TCP in
this test, which has the well-known additive-increase/multiplicative-decrease (AIMD) feedback control
so the performance should be below the ideal). When 5 hosts start data bursting at approximately the
same time, we have the result shown in Figure 7. We see that the bandwidth are shared among 5 hosts
fairly evenly, and no host gets any “privilege” at the moment. When 3 hosts are idle and only 2 (h4

and h5) are competing for the resources, we have the bandwidth of the two hosts shown in Figure 8.
Theoretically the two hosts, when no prioritization is presented, should equally divide the bandwidth.
However, we see that for 3 out of 4 tests, one host has a significantly higher bandwidth over the other
one. Since the transport-layer protocol in these tests are TCP and stream-oriented, the sender tends

6

to easily reach the current bandwidth limit and slow down the transmission. We start the two pairs
((h4, h6) and (h5, h6)) of TCP streaming not perfectly at the same time. Therefore, one TCP connec-
tion will first take control of must of the resources, and thus for the other one the point where it will
experience any congestion is much less than half of the total bandwidth. Then, due to the property of
TCP, it will most likely stay in that small range and bounce up and down in a zigzag manner. Because
the other connection is not striving for more resources since TCP’s congestion control, the dominant one
keeps occupying most of the bandwidth. This TCP imbalance becomes less obvious when more hosts
are involved in the competition: after any relatively dominant TCP connection halves its Congestion
Window and freeing up that amount of bandwidth, a large number of competitors will easily collect the
freed resources as more “probings” happen. Using another network measurement tool Netperf which
support UDP testing[7], we have the result shown in Figure 9. The bandwidth is divided more more
evenly.

Figure 6: 1 host transmitting data to h6

Figure 7: 5 hosts transmitting data concurrently to h6

Now, to prioritize packets from h5, we will set a few rules and configure on router s2’s queue 1 and
queue 2. Open vSwitch supports Quality of Service very well[5]. We can shape our router’s queues
by modifying their max/min rate of packet processing as well as a variable called “priority”[8]. If
needed, a high-priority queue will receive all remaining bandwidth (computing resources to process the
packets) before that bandwidth can be allocated to any lower-priority queue. In this way, we can not
only guarantee our high-priority packets a minimum amount of computing power (for packet processing)
inside the router by setting a min rate, but also allows it to use as much available bandwidth as possible
(in the queue of the router), which further accelerates the packet processing. Therefore, according to the
specifications in section 2, we have set the following rules in the data plane:

1. Queue 1’s minimum rate of bandwidth = 2Gbps, so the packets will be processed at least as fast
as the they can be transmitted on the path (we give a bandwidth limit 2Gbps at the entry point

7

Figure 8: 2 hosts transmitting data concurrently to h6

Figure 9: 2 hosts transmitting UDP data concurrently to h6

of the home LAN).

2. Queue 2’s maximum rate of bandwidth = 2Gbps, so the packets will not be processed faster than
what the link can handle (This will not reduce the maximum bandwidth for hosts h1, h2, h3,
h4. However, if the router’s total bandwidth is much more than 2Gbps, this makes queue 2 less
aggressive in terms of taking away unnecessary resources from queue 1).

3. Priority of queue 1 > priority of queue 2. When both two queues are assigned some packets, this
ensures any extra bandwidth is allocated to queue 1 not queue 2.

Having configured the data plane according to these rules, we do the same tests as when no con-
figuration has been set up. Each host in the home LAN does iPerf connection with content server h6

sequentially in different time, the result is shown in Figure 10. As what we expect, when only one host
is transmitting data, it should be able to use virtually all available bandwidth. When 5 hosts busily
transmit data at the same time, as shown in Figure 11, the high-priority host h5 takes control of most
bandwidth, which make senses since with a much more “powerful” and higher-priority queue, packets
from h5 flow therefore much faster. In this way, h5’s TCP connection can easily dominates the others,
and even though as mentioned in its mirror test there are many competitors constantly probing freed
resources, due to this prioritization and guaranteed high speed of packet processing h5’s TCP connec-
tion can easily recapture its discarded resources caused by congestion control from other challengers, if
any. Essentially, the major benefit of such priority queue here is to “strengthen” the “TCP dominance”.
Similarly, shown in Figure 12 when h5 is competing with only one other host h4, h5’s privilege becomes
even more obvious as there are less attempts of probing to compete for any remaining bandwidth. To
this point, we can confirm that this set up for prioritizing our router works and our all specifications
have been met in TCP cases.

8

Figure 10: 1 host transmitting data to h6 after configuration

Figure 11: 5 hosts transmitting data concurrently to h6 after configuration

Figure 12: 2 hosts transmitting data concurrently to h6 after configuration

However, when we try to redo this series of tests using UDP, the pattern restricts itself to roughly:

bandwidth of a host =
total available bandwidth

of competing hosts

.
The prioritization scheme takes the advantage of congestion control of TCP. When we switch to UDP

connection, rather than slowing down, senders keep pushing as much data as they can to the routers. As
a result, when the altruism of TCP does not exist any more, h5 loses its privileges. However, in today’s
internet, most of our traffic belongs to TCP and congestion control is very common. Thus, this router

9

should work correctly and be able to prioritize packet delivery of specified hosts, as most of the services
we use today fully (e.g. file transfer, data backup, system update, video streaming) or at least partially
(e.g. live streaming, IP phone call) rely on TCP.

5 Conclusion

In this project, we built and tested a SDN-based router that can forward packets and prioritize
the packet forwarding for some specific IP address on Mininet. We started with introducing necessary
tools and the concepts of control plane as well as data plane. Then, we designed our network topology
and created our testing plans. After identifying the tech specifications and detailed goals, we began
the creation of our soft router as well as the auxiliary switch by first programming our POX controller
in the control plane. Having done that, we verified that both switching devices are functioning well.
Then, we configured our router on the data plane so two queues in it can process packets from h5 and
from other hosts in different manners, which therefore will utilize congestion control of TCP to expand
the bandwidth of high-priority sender with others inadvertently slowing down their transmissions. We
showed results of tests and verified this prioritization scheme. We found out this scheme will has no
effect if connections are UDP-based. However, as the usage of TCP is much higher, this SDN design and
such prioritization should work in a real-life scenario.

References

[1] Mininet: An Instant Virtual Network on your Laptop (or other PC)
http://mininet.org/

[2] Qiang: qiangzheng211/-RouterExercise
https://github.com/qiangzheng211/-RouterExercise

[3] Mininet: mininet/openflow-tutorial
https://github.com/mininet/openflow-tutorial/wiki

[4] Writers in POX community: POX Wiki
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-POXAPIs

[5] Writers in Open vSwitch: Quality of Service (QoS) Rate Limiting
http://docs.openvswitch.org/en/latest/howto/qos/#one-physical-network

[6] Dr. Ke: Lab 5: set traffic to different output queues (QoS issue)
http://csie.nqu.edu.tw/smallko/sdn/mySDN Lab5.pdf

[7] Bloger “wsgzao”: A summary about the effectiveness of iPerf and Netperf
https://wsgzao.github.io/post/netperf/

[8] Open vSwitch Manual
http://www.openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.txt

[9] Wikipedia: EtherType
https://en.wikipedia.org/wiki/EtherType

10

